

2. <u>Method # 2</u>: <u>By Resolution into Components</u>- breaking each vectors into ______ triangles and using trigonometry (*We will learn this on _____*.) DO NOT BE ABSENT!

Method 1: Adding Vectors Graphically

(It's making a scaled drawing.)

Steps:

- 1) Decide what <u>quadrant</u> the vectors will be in. Draw the axis and write your ______ in a box.
- 2) Draw the first vector to scale starting at the <u>origin</u> and label it _____.
- 3) Draw the remaining vectors, so that they make a ______path and label them ______, _____, etc.
- 4) Draw the ______ as the dashed line from the ______ to the ______ to the ______ of the last vector and label it _____.
- 5) Measure the length of _____ to get the ______ and the angle of _____ (relative to the closest axis so angles are less than or equal to 45°) to get the ______ and write your answer in a box.

Example 1: Solve the following problem <u>graphically</u>. (That means solve it using a _______.) Sheldon gets upset with Leonard for taking his cereal. Sheldon chases Leonard 60 meters at 40° N of E and then 40 meters at 10° E of N. Calculate Sheldon's total <u>displacement</u>- which is his distance from ______.

Scale:		R =	_ at of

Method #2: Adding Vectors By Resolution into Components

Example 2: Gargamel is trying to catch the Smurfs. He travels at 6 m at 20° N of E, and then 4 m at 20° E of N. Find his displacement.

R = _____ at ____ of ____

a) graphically.

Scale:

use 3 different colors

b) by resolution into components.

Name ____

Extra Example or Practice Problem: A sparrow is flying at 7 m/s at 35° N of E, but then there is a wind blowing at 3 m/s at 20° S of E. Find the velocity of the sparrow. (the bird, not Jack Sparrow ©)

a) graphically.

R = _____ at ____ of _____

Scale:

b) by resolution into components.

R = _____ at _____ of _____

