\qquad
\qquad

Notes and Examples for Vectors
 *Must have protractor w/your name on it every day this unit.

(50 cents for a new one if you forget ())
A) Definitions
scalar- any quantity that has just \qquad (__
examples: \qquad
vector- any quantity that has \qquad and \qquad
examples: \qquad tail head

What does a vector look like? This is how we represent a vector:

The length of the vector gives its \qquad .

The orientation (the way it's pointing) of the vector gives its \qquad -.
B) Orientation of a Vector

S
$20^{\circ} \quad$ of
W

C) Adding Vectors

The sum of two or more vectors is known as the \qquad (\qquad).

We will be learning how to add vectors 2 different ways:

1. Method \# 1: Graphically- making a \qquad
\qquad (taught today.)
2. Method \# 2: By Resolution into Components- breaking each vectors into ____ triangles and using trigonometry (We will learn this on \qquad .) DO NOT BE ABSENT!
\qquad
\qquad

Method 1: Adding Vectors Graphically

(It's making a scaled drawing.)
Steps:

1) Decide what quadrant the vectors will be in. Draw the axis and write your \qquad in a box.
2) Draw the first vector to scale starting at the origin and label it \qquad .
3) Draw the remaining vectors, so that they make a \qquad path and label them
\qquad , \qquad _, \qquad , etc.
4) Draw the \qquad as the dashed line from the \qquad to the
\qquad of the last vector and label it \qquad -.
5) Measure the length of \qquad to get the \qquad and the angle of \qquad (relative to the closest axis so angles are less than or equal to 45°) to get the \qquad and write your answer in a box.

Example 1: Solve the following problem graphically. (That means solve it using a \qquad
\qquad .) Sheldon gets upset with Leonard for taking his cereal. Sheldon chases Leonard 60 meters at $40^{\circ} \mathrm{N}$ of E and then 40 meters at $10^{\circ} \mathrm{E}$ of N . Calculate Sheldon's total displacement- which is his distance from \qquad -.
Scale:
$\mathrm{R}=$ \qquad at \qquad of \qquad
\qquad
\qquad

Method \#2: Adding Vectors By Resolution into Components
Example 2: Gargamel is trying to catch the Smurfs. He travels at 6 m at $20^{\circ} \mathrm{N}$ of E , and then 4 m at $20^{\circ} \mathrm{E}$ of N . Find his displacement.
a) graphically.

Scale:
$\mathrm{R}=$ \qquad at \qquad of \qquad

use 3 different colors

b) by resolution into components.

$R=$ \qquad at \qquad of \qquad
\qquad Hour \qquad

Extra Example or Practice Problem:
A sparrow is flying at $7 \mathrm{~m} / \mathrm{s}$ at $35^{\circ} \mathrm{N}$ of E , but then there is a wind blowing at $3 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{S}$ of E . Find the velocity of the sparrow. (the bird, not Jack Sparrow Θ)
a) graphically.
$\mathrm{R}=$ \qquad at \qquad of \qquad

Scale:
b) by resolution into components.
$\mathrm{R}=$ \qquad at \qquad of \qquad

